
INTRODUCTION

Thai Plastic and Chemicals (TPC)

is a manufacturer and distributor of polyvinyl chloride polymer (PVC) with headquarters in Bangkok, Thailand.

With over 30 years of experience in servicing the PVC markets in Thailand and other Asian countries, TPC is the leading supplier in South East Asia with the largest capacity in this region.

HISTORY OF COMPANY

TPC is registered as The first PVC plant a limited company. in Thailand, in Samut Prakarn, commences commercial production.

in the Stock Exchange venture to produce Industrial Estate, of Thailand. TPC joins the state's compound. TPC holds a 35% share. Eastern Seaboard Industrial Project as a founding member and invests in a 5.40% share of National Petrophemical Co. Ltd., (NPC).

1984 TPC registered

TPC establishes common shares as a Riken (Thailand) registered company Co., Ltd. as a joint

1989

production. TPC establishes Siam Stabilizers and Chemicals Co., Ltd. as a joint TPC is one in four venture to produce companies of the compound additives group) at Map Ta Put that enhance the capacity of PVC to withstand high temperatures. TPC holds a 60% share.

1990

TPC's second

PVC plant, at

Map Ta Phut

1992

His Molesty the Highness Princess Chakri Sirindhom special-grade PVC begins commercial graciously presided over the official opening of the Group paste resin. TPC 1 Petrochemical Industry (of which

Industrial Estate.

TPC establishes TPC acquires King and Her Royal TPC Oxy Co., Ltd. public company as a loint venture status. in Thailand for producing and distributing PVC holds a 51% share.

1993

1996

TPC invests in Rayong Clefins Co., Ltd. to manufacture and distribute ethylene. TPC holds a 7% shorn.

1998

TPC establishes plant repair and maintenance. design, and environmental management services.

1999

TPC buys shares in Total Plant Service Nawaplastic Industries Co., Ltd. to provide (Saraburi) Co., Ltd., engineering design, which manufactures and distributes PVC ploe and finished PVC production process products to serve as a base for developing new finished PVC products and markets for the construction industry, and thereby increase the use of PVC resin in Thailand.

2001

Purchases all shares in TPC Oxy Co., Ltd., which becomes TPC Paste Resin Co., Ltd.,

2004

Siam Coment Public Co., Utd. offers to purchase common shares of TPC from other shareholders. thus making SCG a major shareholder

THAILAND

VIETNAM

1993

TPC establishes of Vietnam.

TPC establishes a branch office in Viet-Thai Plastchem Ho Chi Minh Cry, Co., Ltd. (VTPC) Socialist Republic as a joint venture to manufacture and distribute PVC compound in Vietnam. TPC holds a 66.28% share.

1995 TPC establishes and Chemical

Mitsui Vina Plastic with Cementhal as a joint venture Polymers (SMP) to manufacture and as a joint venture distribute PVC resin to produce and holds a 24% share. in indonesia. TPC

1996

INDONESIA

1998 TPC establishes. The first PVC plant in the Chemicals Co., Ltd., Spoialist Republic Corp.,Ltd. (MVPC) PT. Slam Maspion of Vietnam, belonging to MVPC,begins commercial in Vietnam, TPC distribute PVC resin production. holds a 20% share

1999 By converting its debt into equity. TPC increase its proportion of shares hold in VTPC from 66.28% to 72.49%

2000

TPC increases its proportion of shares held in MPVC from 24% to 70% Together with that the name of the company changes to TPC Vina Plast

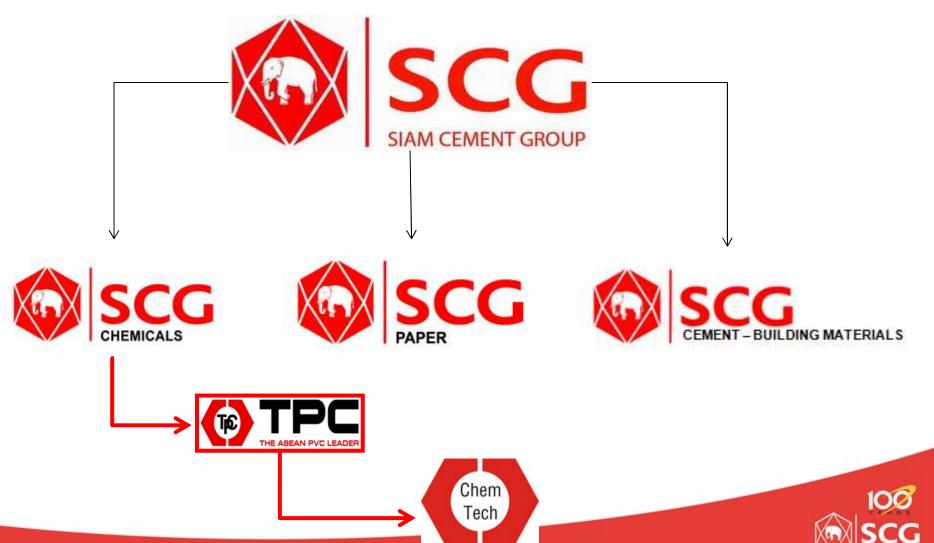
Corp.,Ltd.(TPC V

2005 2004

TPC purchases, A subsidiary extriblishes with Slam Coment Chemtech Co.,Ltd. Public Co., Ltd., to manufacture and oil common shares of SMP, and changes its name distribute XLPE compound in the Socialist Republic to PT. TPC Indo Plastic and Chemicals (TPC of Vietnam.

Indo), indirectly increasing TPC's share in the company from Chem 20% to 40%. Tech

A subsidiary establishes Minh Thail HouseComponent Co. Ltd. together with a local investor to manufacture and PVC products for construction purposes in the Socialist Republic of Vietnam. The subsidiary holds 60%



2006

of all shares.

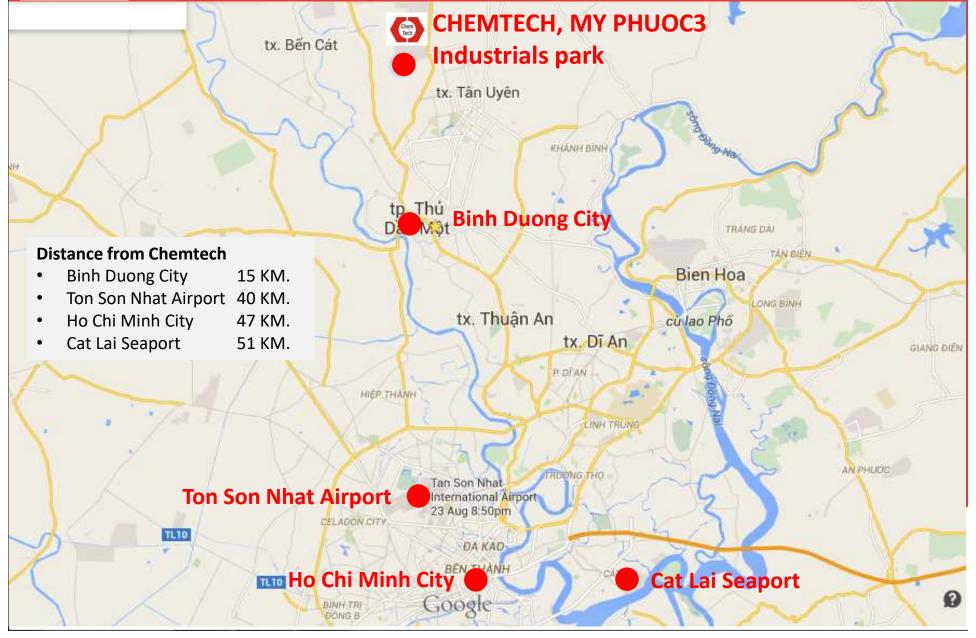
Introduction

SCG was established in 1913

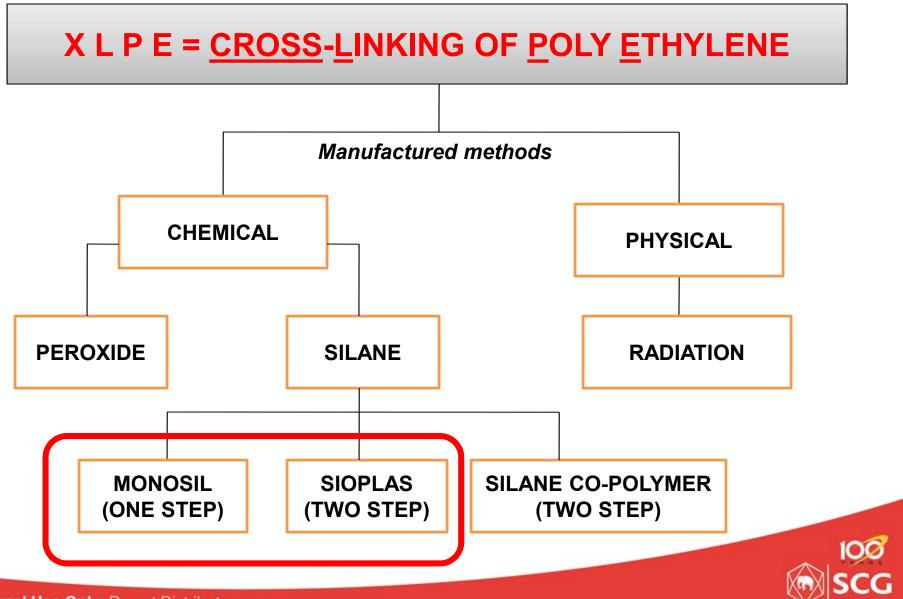
INTRODUCTION

Chemtech Company

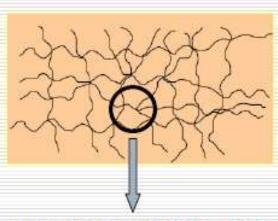
is a manufacturer and distributor of Crosslink Polyethylene (XLPE) Compound headquarters in Binh Duong, Vietnam.


ESTABLISHMENT: October, 2004

CURRENT CAPACITY: 12,000 MT/yr.



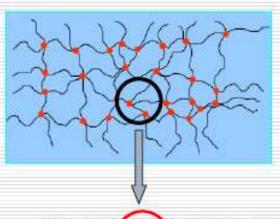
ADDRESS: D8_A4CN - My Phuoc 3 Industrial Park, Ben Cat Town, Binh Duong Province.



What is Crosslinked PE (XLPE)?

What is Crosslinked PE (XLPE)?

What is XLPE?


-CH2-CH2-CH2-CH2-

-CH2-CH2-CH2-CH2-

PE (Polyethylene)

: Separate Molecule

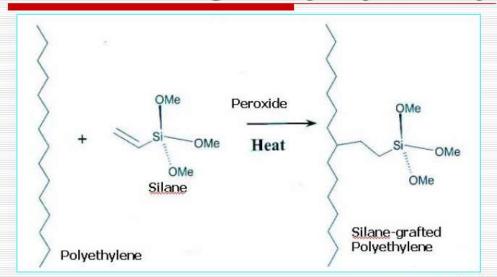
: Melt, Flow

-CH2-CH2-CH2-CH2-|Silane

-CH2-CH2-CH2-CH2-CH2-

XLPE (Crosslinked PE)

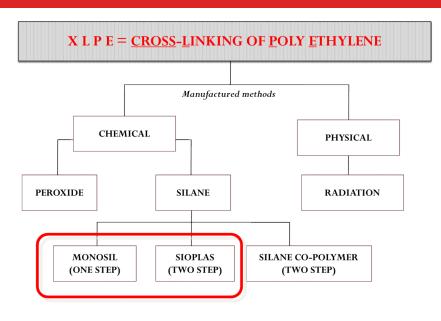
: Crosslinking attaches


molecules together

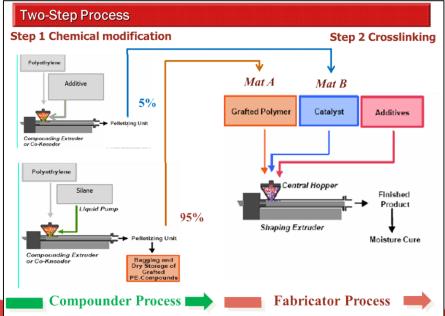
Crosslinking

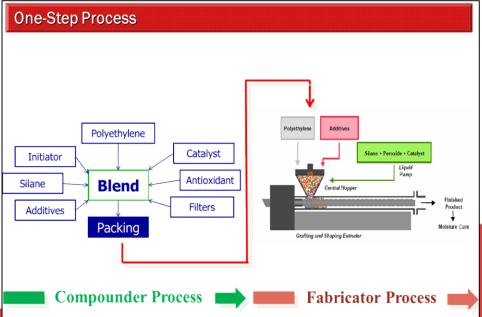
How to produce XLPE?

1. Silane Grafting to Polyethylene Step



- Grafting reaction in the extruder (140-240 oC)
- L/D of Extruder 24 30


2. Crosslinking Step of Silane Grafted PE in the Presence of Moisture


Crosslinks at temp 70-90 oC

XLPE Technology and process

Chemtech manufacturing of 1-step and 2-step technology

Internal Use Only Do not Distribute

One-Step and Two-Step XLPE Comparison

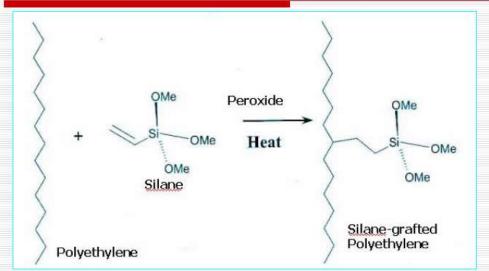
Process	Advantage	Disadvantage
	☑ Ready-to-use , no mixing step required	Request long L/D ratio of Cable Extruder L/D 27 ~ 30 to process
One Step Silane XLPE (Monsil Process)	✓ Lower investment for XLPE manufacture	Required high processing temperature in cable Extruder
		☑ If not use up after open the bag- Silane will evaporate to the air- No crosslink
Two Step Silane	✓ Stable cross link rate, Silane already grafted on PE in Material A	☑ Need mixing step to mix Mat A + Mat B
XLPE (Sioplas Process)	☑ Suitable for normal L/D ratio of Cable extruder L/D 20 ~ 26	☑ Higher investment cost for XLPE manufacture.
	✓ Low processing temperature 140– 180°C	☑ If not use up after open Mat A bag.
		- Pre-crosslinking problem (scorch)

Typical properties

- Specific Gravity
- Tensile Strength

Aging – Change of tensile strength

Elongation at Break


Aging – Change of elongation

- Electrical properties
 - Dielectric Strength
 - Dielectric Constant
- % Crosslinking
 - Hot set
 - Gel content

How to produce XLPE?

1. Silane Grafting to Polyethylene Step

- Grafting reaction in the extruder (140-240 oC)
- L/D of Extruder >30

2. Crosslinking Step of Silane Grafted PE in the Presence of Moisture

Crosslinks at temp 70-90 oC

Product and Sales

MAIN RAW MATERIAL

CHEMTECH PRODUCT

CABLE MANUFACTURER

LV cable insulation up to 1KV

MV cable insulation From 1KV to 24KV

XLPE FOR LOW AND MEDIUM VOLTAGE CABLE INSULATION

Products Brochure

XLPE FOR LOW AND MEDIUM VOLTAGE CABLE INSULATION

ChemTech Technology 1 step and 2 steps provides XLPE compound applied on low and medium insulation with outstanding properties. With additives's presentation such as metal deactivator, processing aids and catalysts make better properties of XLPE insulation: high crosslinking rate, gloss, smooth surface and easy processing. ChemTech also guarantees

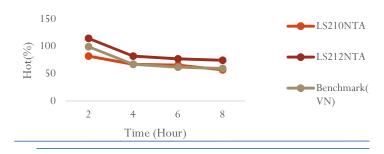
Mechanical and Electrical properties meet with IEC or NFC standard for XLPE insulation.

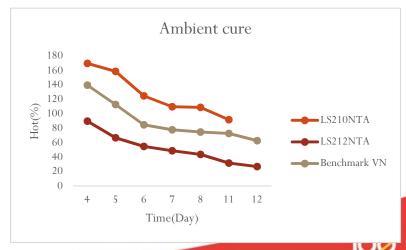
				GRADE							
	XLPE PROPERTIES					MEDIUM VOLTAGE					
						2 Steps				1 Step	
Item	Test Items	Test Method	Unit	Spec.	LS243NTA	LS210NTA	LS211NTA	LS240NTA	LS220NTA	LS212NTA	LS121NTA
1	Density (Base resin)	ASTM D-1505	g/cm ³	-				~ 0.92			
2	Elongation At Break	IEC 60811-1-1	%	Min.200	485	552	525	515	528	540	560
3	Tensile Strength	IEC 60811-1-1	MPa	Min.12.5				> 20			
After age	ing (135°C, 168 hrs.)										
4	Change of Elongation	IEC 60811-1-2	%	±25	-9	-12	-15	-10	-8	-15	-18
5	Change of Tensile Strength	IEC 60811-1-2	%	±25	14	10	9	15	17	10	17
Hot Set To	est (200°C, 0.2 MPa, 15 min.	.)									
6	Elongation under load	IEC 60811-2-1	%	Max.175	20	65	45	25	65	25	20
7	Elongation after cooling	IEC 60811-2-1	%	Max.15	-11	-5	-10	-10	-10	-10	-15
Electrical	Properties	•			_		•	•			
8	Dielectric Strength	IEC 60243	KV/mm	-	30 - 35						
9	Dielectric Constant (50 Hz)	IEC 60250	-	-				1.7 - 1.8			
10	Volume Resistivity (1 kV)	IEC 60093	Ω.cm	-				> 1.0x10 ¹⁷	,		
Recommended applications					Medium voltage up to 24 kV	Cable with thickness < 1.5 mm	Big size and small size of cable	Cable with thickness over 1.5 mm to ~ 2.0 mm	Cable with thickness < 1.5 mm	Thickness 0.5 mm - 2.0 mm	All sizes of cable
Benefits				Fast curing	Good surface	Meet NFC 33_209 Standard	Fast curing	Contains metal deactivator additive	Gloss surface, fast curing	Easier processing	

LS210NTA, LS212NTA and Benchmark product(VN)

Process condition:

Grade	L/D	Screw dia. (mm)	Size of cable (mm²)	Thickness (mm)	CMB (%)	Screw speed (rpm)	Line speed (M/m)	Temperature condition (with torch) (°C)	Gloss level	Shrinkage Immerse cure @ 90°C 4 hours
LS210NTA						19	20.2	150-159-159-164-172-178-184-300	**	1
LS212NTA	25	120	95	1.7	4.5	18.9	21.3	149-159-157-164-172-177-180-287	***	0.75
Benchmark (VN)						19	20.4	150-159-157-164-172-177-180-294	***	0.75


Test results


Test on sample cable

Immerson ours @ 00 % C (hours)	LS21	0NTA	LS21	2NTA	Benchmark (VN)	
Immerse cure @ 90 ° C (hour)	Hot (%)	Set (%)	Hot (%)	Set (%)	Hot (%)	Set (%)
2	82.5	10	115	1.25	100	5
4	67.5	5	82.5	5	67.5	3.75
6	66.25	0	77.5	1.25	62.5	0
8	57.5	0	75	3.75	60	1.25

Ambient cure (day)	LS210NTA		LS212NTA		Benchmark (VN)	
	Hot (%)	Hot (%) Set (%)		Set (%)	Hot (%)	Set (%)
4	170	10	90	15	140	20
5	159	7.5	67	12.5	112.5	8.75
6	125	5	55	10	85	5
7	110	5	49	10	77.5	5
8	109	2.5	44	6.25	75	2.5
11	92.5	2.5	32	3.75	72.5	1
12	Out of	sample	27	1.25	62.5	0

Immerse cure

Curing Time

		Thickness and curing time							
Gra	de	3.5	mm	5 mm					
Gire	ide	Force cure Ambient cur (hour) (day)		Force cure (hour)	Ambient cure (day)				
Medium voltage	LS243NTA	5	10	10	21				
		1 r	nm	2 mm					
	LS210NTA	2	6	8	15				
	LS220NTA	2	6	8	15				
Low voltago	LS211NTA (*)	2	4	8	15				
Low voltage	LS240NTA	1	2	4	8				
	LS212NTA	0.5	1.5	2	6				
	LS121NTA	1	2	4	8				

(*) LS211NTA is accordance with NFC 33_209 standard, the other grades are accordance with IEC 60502 standard

Surface


Product Application

Grade	Application
LS 243 NTA	Medium Voltage Insulation up to 24KV, Fast curing
LS 210 NTA	Low Voltage Insulation - Cable with thickness < 1.5 mm, Good surface
LS 211 NTA	Low Voltage Insulation – Meet NFC 33 – 209 Standard (higher spec. than IEC)
LS 240 NTA	Low Voltage Insulation – Fast Curing and suitable for wall thickness from over 1.5 to ~2 mm
LS 220 NTA	Low Voltage Insulation – Cable with thickness < 1.5 mm, Contains Metal deactivator
LS 212 NTA	Low Voltage Insulation – Thickness from 0.5-2.0mm with gloss surface, fast curing
LS 121 NTA	Low Voltage Insulation – One step grade, easier processing

Application

XLPE Insulation

Low Voltage and Medium Voltage

CV Cable

ABC Cable

Application of XLPE

1. XLPE Insulation for Power Cable

- Low Volt (< 1 kV)
- Medium Volt (1-33/45 kV)
- High Volt (33/45-132 kV)
- Extra High Volt (>132 kV)

Packaging

- Packed in 25kg paper/PP bag consisting of:
 - > 23.75 Kg Material A in vacuum sealed aluminum bag
 - 1.25 Kg Material B in small aluminum bag

55 bags on 1 pallet (1,375 MT)

Packaging

570 kg / box

Customer name list

Vietnam

Thailand

KOLAO

EVERTOP

Sri Lanka

Pakistan

Indonesia

India

South Africa

Certificated

ISO 9001 - Surveillance

Certificate of Registration QUALITY MANAGEMENT SYSTEM - ISO 9001:2015 This is to certify that: CHEMICAL TO, BAH, CM, My Phuce 3 Industrial Park, Ben Call Town, Birch Dosong Province, Vectorian Holds Certificate Number: FM 702823 and operates a Quality Management System which compiles with the requirements of ISO 9001:2015 for the following scope: The manufacture and supply of crosslinked polyethylene (XLPE). For and on behalf of 85: Chris Cheung, Head of Compilance & Risk - Akila Pacific Chri

ISO 14001 - Re-Certificate

ISO 45001 - Re-Certificate

